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Abstract

Linear and weakly nonlinear properties of thermohaline convection in rotating fluids are investigated. Linear stability analysis is stud-
ied by plotting graphs for different values of physical parameters relevant to the Earth’s outer core and oceans. We have derived a non-
linear two-dimensional Landau–Ginzburg equation with real coefficients near the onset of stationary convection at the supercritical
pitchfork bifurcation and shown the occurrence of Eckhaus and zigzag instabilities. We have studied heat transfer by using Nusselt num-
ber which is obtained from Landau–Ginzburg equation at the onset of stationary convection for the steady case. A coupled two-dimen-
sional Landau–Ginzburg type equations with complex coefficients near the onset of oscillatory convection are derived and the stability
regions of travelling and standing waves discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The understanding of convection in rotating fluids is of
fundamental importance in many problems of geophysical
and astrophysical fluid dynamics. Thermohaline convec-
tion in rotating system is one of the reason for mixing of
different masses of water in oceans, mixing of light alloying
elements like Sulphur in molten Iron in Earth’s outer core
and mixing of Helium (which is formed due to fusion of
Hydrogen) in Hydrogen in stellar core.

Thermohaline convection, convection in binary liquid
and magnetoconvection are examples of double diffusive
system. In thermohaline convection, the temperature and
the salt concentration provide the two diffusivities. Convec-
tion in binary liquids is similar to the thermohaline convec-
tion except for the fact that a temperature difference can
drive a mass current. In convection in binary liquids, the
temperature and the concentration of the light component
of the liquid provide two diffusivities. These convective
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double diffusive systems and Rayleigh–Benard convec-
tion in rotating fluid are capable of showing stationary
convection at pitchfork bifurcation, oscillatory convec-
tion at Hopf bifurcation (both these bifurcations are pri-
mary bifurcations), Takens–Bogdanov bifurcation and
co-dimension two bifurcation (these two bifurcations are
secondary bifurcations).

In this paper, we study thermohaline convection in
rotating fluid (which is kept rotating at a constant angular
velocity ~X ¼ Xêz, about z-axis) lying between two horizon-
tal boundaries which are dynamically free. The onset of
instabilities in rotating thermohaline convection has been
considered by Pearlistein [6]. The problem where the Tay-
lor number is chosen so that there is a triple zero eigenvalue
(corresponding to a bifurcation point of co-dimension
three) has been investigated for rotating thermohaline con-
vection by Arneodo et al. [1]. The onset of instabilities in
rotating magnetoconvection for viscous fluid has been
investigated by Tagare [7] and for inviscid fluid has been
investigated by Tagare and Rameshwar [8].

In Section 2, we write basic equations of thermohaline
convection in rotating fluid. In Section 3, we study the
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Nomenclature

A1L amplitude of left travelling waves
A1R amplitude of right travelling waves
C perturbed concentration
d vertical length scale
g gravitational acceleration
H rate of heat transport
L Lewis number
Nu Nusselt number
P0 pressure
p growth rate of disturbances
Pr Prandtl number
q horizontal wave number
R1 thermal Rayleigh number
R2 salinity Rayleigh number
S0 salinity concentration
DS0 salinity concentration between upper and lower

layers
t time coordinate

Ta Taylor number
T 0 temperature
DT 0 temperature difference between upper and lower

layers
u; v;w horizontal and vertical velocity components
x; y; z horizontal and vertical coordinates

Greek symbols

q0; q0o density and mean density of the fluid
m kinematic viscosity
jT; jS thermal diffusivity and salinity diffusivity
X angular velocity
a; bs thermal and salinity expansion coefficients
x frequency

Superscript
0 variables with dimension
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linear stability analysis. Since the bifurcation is continuous
one, only a slow modulation of the convective roll pattern
is allowed by the fluid equations near the onset. The time
evolution of general pattern is developed in Section 4, for
a region R2 < R2c, (where R2 ¼ R2c corresponds to a critical
value of the salinity Rayleigh number in a rotating thermo-
haline convection at a Takens–Bogdanov bifurcation
point) by means of multiple scale analysis used by Newell
and Whitehead [5]. In Section 4, we derive a nonlinear
two-dimensional Landau–Ginzburg equation in a complex
amplitude AðX ; Y ; T Þ with real coefficients. In Section 4.1,
we have shown the occurrence of secondary instabilities
such as Eckhaus instability and zigzag instability. In Sec-
tion 4.2, by dropping t-dependence from stationary Lan-
dau–Ginzburg equation we have studied Nusselt number
at the lower plate. In Section 5, we derive coupled Lan-
dau–Ginzburg type equations in complex amplitudes
A1R;A1L with complex coefficients. Here A1R and A1L stand
for amplitudes of right hand and left hand travelling waves.
When A1R ¼ A1L, we get standing waves. In Section 5.1, fol-
lowing Matthews and Rucklidge [4], we have dropped slow
space dependence and obtained two ordinary differential
equations in A1RðT Þ;A1LðT Þ; with complex coefficients,
termed as Landau equations and discussed the stability
regions of travelling waves and standing waves. We have
given exact analytical solutions for the complex Landau
equations. In Section 6, we write the conclusions of this
paper.
2. Basic equations

We consider an infinite horizontal layer of fluid of depth
d with linear temperature and salinity gradient (in the
undisturbed state) which is kept rotating at a constant
angular velocity ~X ¼ Xêz about z-axis. Following Veronis
[9], we consider density q0 as

q0 ¼ q0o½1� aðT 0 � T 0bÞ þ bsðS0 � S0bÞ�; ð2:1Þ

where q0o is the mean density of the system, T 0 and S0 are
the temperature and salinity concentration of the system.
a and bs are thermal and salinity expansion coefficients of
density with respect to temperature and concentration.
Here a > 0; bs > 0 in oceanic water because density of salt
is more than water. In Earth’s outer core bs < 0 because
density of liquid Iron (which acts like main liquid in ther-
mohaline convection) is more than molten Sulphur (which
acts like salt). In oceanic fluid, temperature gradient is
destabilizing and salinity gradient is stabilizing. In Earth’s
outer core both temperature and salinity gradients are
destabilizing. However, rotation is always stabilizing.
Thermohaline convection in rotating fluid is an example
of triple diffusive system. We use Cartesian system of
co-ordinates whose dimension co-ordinates x0; y0 and z0

are scaled on d. The velocity vector ~V ðu0; v0;w0Þ; density
q0, temperature h0, salinity concentration C0, time t0 and
pressure P0 are non-dimensionalised by scales jT/d, q0o,
DT 0, DS0, d2=jT and q0ojTd2. In the Boussinesq approxima-
tion one considers the fluid incompressible except when
dealing with the buoyancy terms which drives the thermal
and salinity concentration. The dimensionless parameters
required for the description of the motion are: thermal
Rayleigh number R1 ¼ agDT 0d3=jTm, salinity Rayleigh
number R2 ¼ bsgDS0d3= jTm, Taylor number Ta ¼
4X2d4=m2, thermal Prandtl number Pr ¼ m=jT, Lewis num-
ber L ¼ jS=jT < 1: This implies that heat diffusive is faster
than salt. The basic dimensionless equations for thermoha-
line convection in a rotating fluid in the Boussinesq
approximation are:
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where the vorticity ~x ¼ r� ~V ¼ ðxx;xy ;xzÞ. The z-com-
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h ¼ o2=ox2 þ o2=oy2 is the horizontal operator.
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3. Linear stability analysis

We perform the linear stability analysis of the problem
by substituting

w ¼ W ðzÞeðiqxþptÞ

into linearized version of Eq. (2.9) viz. Lw ¼ 0; and
obtaining equation

ðD2 � q2 � pÞ D2 � q2 � p
L
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where D ¼ d=dz and p is the growth rate of the distur-
bances. In this paper we consider idealized free–free bound-
ary conditions. Here W and all its even derivatives vanish
at z ¼ 0 and z ¼ 1.
3.1. Determination of marginal stability when Rayleigh
number R1 is a dependent variable

Substituting W ðzÞ ¼ sin pz and p ¼ ix into Eq. (3.1), we
get
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From relation (3.3a), A1 > 0, since Pr > 0. In this section,
we obtain threshold Rayleigh numbers for the stationary
instability and oscillatory instability.
3.1.1. Stationary convection ðx ¼ 0Þ
For the onset of stationary convection we set x ¼ 0 into

Eq. (3.2), we get

R1s ¼
R2

L
þ ð-

6
s þ Tap2Þ

q2
s

: ð3:4Þ
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Here R1s is the value of Rayleigh number R1 for the sta-
tionary convection. The critical value of R1s is obtained
for q ¼ qsc where

2
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þ 3
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¼ 1þ Ta
p4
: ð3:5Þ

Threshold for the onset of stationary convection at pitch-
fork bifurcation is given by Eq. (3.4), with q ¼ qsc. Thus

R1sc ¼
R2

L
þ -6

sc þ Tap2

q2
sc

; ð3:6Þ

where -2
sc ¼ p2 þ q2

sc. On eliminating Ta from Eqs. (3.5)
and (3.6), we get

R1sc ¼
R2

L
þ 3-4

sc:
3.1.2. Oscillatory convection ðx2 > 0Þ
For the oscillatory convection ðx 6¼ 0Þ and from Eq.

(3.2), R1 will be complex. But the physical meaning of R1

requires it to be real. The condition that R1 is real implies
that imaginary part of Eq. (3.2) is zero. That is

A1x
4 þ A2x

2 þ A3 ¼ 0; ð3:7Þ
where A1; A2; A3 are given by Eqs. (3.3a)–(3.3c). We get
A2 < 0 and A3 > 0, for L < Pr < 1 or L > Pr > 1 and for
some values of other physical parameters. When
A2 < 0; A3 > 0 according to Descarte’s rule their exist
two positive roots of Eq. (3.7), which are correspond to
two onset frequencies. From A3 ¼ 0 we get
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We get two positive roots of Eq. (3.8) only when R2 > 0.
Oscillatory convection exist if atleast one root of Eq.
(3.8) is positive. Critical wave number for stationary con-
vection is depends on only Ta, but critical wave number
of oscillatory convection depends on Ta; R2; L and Pr.
Each positive root of Eq. (3.8) corresponds to the Ta-
kens–Bogdanov bifurcation point. Takens–Bogdanov
bifurcation point is the point at which the oscillatory neu-
tral curve intersect the stationary neutral curve and the fre-
quency on the oscillatory neutral curve approaches to zero
as the intersection point is approached. Takens–Bogdanov
bifurcation point corresponds to a double zero eigenvalue
of the linear growth rate. At Takens–Bogdanov bifurcation
point we get

R1sðqsÞ ¼ R1oðqoÞ ¼ R1cðqcÞ and qs ¼ qo ¼ qc: ð3:9Þ
At the co-dimension two bifurcation point, we have

R1scðqscÞ ¼ R1ocðqocÞ and qsc 6¼ qoc: ð3:10Þ
Figs. 1–3 are plotted in ðq;R1Þ-plane. In Figs. 1–3, station-
ary convection thermal Rayleigh numbers are taken on
solid lines and oscillatory convection thermal Rayleigh
numbers are taken on dotted lines. In Figs. 1–3, we have
observed the effect of physical parameters viz. Ta; R2 and
Pr on the onset of both stationary convection (pitchfork
bifurcation) and oscillatory convection (Hopf bifurcation).
These Figs. 1–3 show that when a parameter increases for
the remaining fixed parameters the onset of both stationary
convection and oscillatory convection increases. In Fig. 3,
Prandtl number do not show any effect on the stationary
convection, since stationary convection Rayleigh number
R1s is independent of Prandtl number. Fig. 3b shows both
primary and secondary bifurcations. Fig. 4 is plotted in
ðR2;R1Þ plane. In Fig. 4a, the intersection point of a solid
line and a dotted line appears at

R2 ¼ R2c ¼
L2 1þ 1
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ð1� LÞq2

c
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corresponding to a Takens–Bogdanov bifurcation point. In
the limit R2 ! R2c; the frequency of the oscillatory instabil-
ity tends to zero and weakly nonlinear analysis in this re-
gion gives us a nonlinear equation describes the behavior
of the system near the Takens–Bogdanov bifurcation point.
This Takens–Bogdanov bifurcation point increases as Tay-
lor number increases. In Fig. 4b, the intersection point of a
solid line and a dotted line corresponding to a Taylor num-
ber gives a co-dimension two bifurcation point. Let
R2 ¼ R2ct at a co-dimension two bifurcation point. If
R2 < R2ct, we get stationary convection as a first instability.
If R2 > R2ct, then we get oscillatory convection as a first
instability. Co-dimension two bifurcation point increases
as Taylor number increases.
3.2. Determination of marginal stability when Rayleigh

number R1 is an independent variable

Substituting W ¼ sin pz into Eq. (3.1), we get a fourth
degree polynomial equation in p of the form

p4 þ Bp3 þ Cp2 þ Dp þ E ¼ 0; ð3:12Þ

where

B ¼ -2ð1þ Lþ 2PrÞ; ð3:13aÞ
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� R1q2ðLþ PrÞ þ R2q2ð1þ PrÞ�; ð3:13cÞ

E ¼ Pr2-2½Lð-6 þ Tap2Þ þ q2ðR2 � R1LÞ�: ð3:13dÞ

Setting p ¼ ix in Eq. (3.12), and considering its real and
imaginary parts, we get

x4 � Cx2 þ E ¼ 0; ð3:14aÞ
Bx2 � D ¼ 0: ð3:14bÞ
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3.2.1. Stationary convection ðx ¼ 0Þ
Substituting x ¼ 0 into Eq. (3.12), we get E ¼ 0 which

gives stationary convection. R1s is determined by putting
R1 ¼ R1s into E ¼ 0. Let s ¼ q2ð> 0Þ, then the equation
E ¼ 0 can be written as

R1 �
R2

L

� �
s ¼ ðsþ p2Þ3 þ Tap2: ð3:15Þ

We have given an analytical expression (3.6) to find critical
thermal Rayleigh number by considering R1 as a dependent
variable. Similarly we can find an analytical expression for
critical Taylor number by considering R1 as an indepen-
dent variable [3]. This critical Taylor number is computed
as follows:

The derivative of Eq. (3.15) gives

R1 �
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L
¼ 3ðsþ p2Þ2: ð3:16Þ

Substituting R1 � ðR2=LÞ from Eq. (3.16) into Eq. (3.15), we
get
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Eq. (3.17) is nothing but Eq. (3.5), since s ¼ q2. Eq. (3.16)
can be written in terms of s as

s ¼ R1 � ðR2=LÞ
3
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We consider only positive values of s. On substituting Eq.
(3.18) into Eq. (3.15), we get the critical Taylor number
Ta ¼ Tasc where

Tasc ¼ R1�
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Here R1rb is the critical thermal Rayleigh number of Ray-
leigh–Bénard convection problem. From Eq. (3.19) we cal-
culate critical Taylor number for the given parameters R1,
L and R2. For the points fR1; Tascg on the curve (3.19),
E ¼ 0 with

q ¼ qsc ¼
R1 � ðR2=LÞ
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We have to use Eq. (3.20) to determine the sign of E (i.e.,
E < 0, E > 0). Here the system is stable for E > 0
(R1 < R1sc for all s) and it is unstable for E < 0 (R1 > R1sc

in some range of s, i.e., s1 < s < s2). Fig. 5 is plotted in
ðR1; TaÞ plane for the curve (3.19). In this figure Ta ¼ 0
on R1 axis. On R1 axis each solid line corresponds to R2

starting from R1 ¼ R1rb þ ðR2=LÞ. The frequency x ¼ 0
and E ¼ 0 are conditions for pitchfork bifurcation corre-
sponding to stationary convection.

3.2.2. Oscillatory convection ðx2 > 0Þ
From Eq. (3.14a), we can have marginal stability if

x2 ¼ D=B, D > 0 and

D2 � BCD þ B2E ¼ 0: ð3:21Þ
Eq. (3.21) gives a quadratic equation in R1. We will get
oscillatory convection for a set of physical parameters cor-
responding to positive value of x2 and thermal Rayleigh
number exists for x2 > 0: Because of complicated expres-
sions it is not possible to find closed forms for critical
Taylor number and critical wave number of oscillatory
convection.

At Takens–Bogdanov bifurcation point we get x2 ¼ 0,
which gives D ¼ 0 and E ¼ 0. Eliminating Ta from D ¼ 0
and E ¼ 0, we get
q6 þ 3p2q4 þ R1ðPr � 1Þ
2

þ R2ðL� PrÞ
2L2

þ 3p4

� �
q2 þ p6 ¼ 0:

ð3:22Þ

Above Eq. (3.22) gives either two positive roots or no po-
sitive roots. We get two positive roots when R2 < 0 and
Pr < L < 1 or when R2 > 0 and L < Pr < 1 (see Fig. 6).
If the roots of Eq. (3.22) are positive then we get two
Takens–Bogdanov bifurcation points. In Figs. 7 and 8 left
side of the solid line below the intersection point and left
side of the dotted line above the intersection point gives
stability region of the system. In this stability region we
get D > 0 and D2 � BCDþ B2E > 0: In these Figs. 7 and
8 at the intersection point we get x2 > 0; which gives co-
dimension two bifurcation point. This co-dimension two
bifurcation point moves down wards when Pr decreases
in Figs. 7 and 8. Eliminating Ta and R1 from equations
E ¼ 0, D ¼ 0 and C ¼ 0, we get

R2 ¼ R�2c ¼
-6L3ð1þ 2PrÞ

Prq2ðL� 1ÞðPr � LÞ
; ð3:23Þ

which is a co-dimension three bifurcation point corre-
sponding to triple zero eigenvalue. In this paper we are
considering physically realistic case of L < 1:
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However for L ¼ 1, we get the interesting results. At this
value L ¼ 1, Eq. (3.21) gives

ðsþ p2Þ3 þ ðR2 � R1Þs
2ð1þ PrÞ þ

Tap2Pr2

ð1þ PrÞ2
¼ 0: ð3:24Þ

Equations (3.15), (3.18) and (3.19) with L ¼ 1 gives

ðR1 � R2Þs ¼ ðsþ p2Þ3 þ Tap2; ð3:25Þ

s ¼ R1 � R2

3
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2

� p2; ð3:26Þ
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R1 � R2
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2

� 1

" #
: ð3:27Þ

From Eq. (3.24), we can obtain critical wave number and
critical Taylor number. On comparing Eqs. (3.24) and
(3.25), and substituting

R1 !
R1

2ð1þ PrÞ ; R2 !
R2

2ð1þ PrÞ ; Ta! TaPr2

ð1þ PrÞ2
;

ð3:28Þ
into Eqs. (3.26) and (3.27), we get critical wave number qoc

and critical Taylor number Taoc for oscillatory convection
as

qoc ¼
1

½2ð1þ PrÞ�
1
2

R1 � R2

3

� �1
2

� p2

( )1
2

; ð3:29Þ

Taoc ¼ ðR1 � R2Þ
1þ Pr

23Pr4

� �1
2 R1 � R2

R1rb

� �1
2

� 1þ Pr

2Pr2

" #
: ð3:30Þ

The coefficient

1þ Pr

23Pr4

� �1
2

of ðR1 � R2Þ in Eq. (3.30) is equal to unity at Pr ¼
Prc ¼ 0:67659 and it is less than unity for Pr > Prc. When
Pr > Prc, we do not get oscillatory convection. For
Pr < Prc, Eq. (3.27) intersects Eq. (3.30) at

R1ct ¼ R2 þ ð1þ � Þ2R1rb; Tact ¼ � ð1þ � Þ2R1rb; ð3:31Þ
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where

� ¼ 2
1
2ð1þ PrÞ � ð1þ PrÞ

1
2

ð1þ PrÞ
1
2 � 2

3
2Pr2

:

In above Eq. (3.31), Tact is also obtained by Pearlstein [6]
in Appendix (A4). The suffix ct in Eq. (3.31) stands for
parameter at co-dimension two bifurcation point. The ther-
mal Rayleigh number R1 ¼ R1ct is obtained by equating
Eqs. (3.27) and (3.30). Substituting R1 ¼ R1ct either into
Eqs. (3.27) or (3.30), we get Ta ¼ Tact: At Tact,
Tasc ¼ Taoc and qsc 6¼ qoc. At Pr ¼ Prc, Taoc ! Tasc asymp-
totically as R1 !1 i.e., the intersection between Eqs.
(3.27) and (3.30) appears at infinity. Figs. 8a–d show that
with decreasing Pr < Prc, Tact and R1ct decreases. Thus at
Pr ¼ 0, we get co-dimension two bifurcation point at
R1ct ¼ 2R1rb þ R2 and Tact ¼ 2ð21

2 � 1ÞR1rb. In Figs. 7 and
8, when Ta < Tact, we get stationary convection as a first
instability while for Ta > Tact the first instability will be
oscillatory convection.
4. Derivation of Landau–Ginzburg equation at the onset of
stationary convection

In this section the evolution of a general pattern is devel-
oped by means of a multiple scale analysis used by Newell
and Whitehead [5]. A small amplitude convection cell is
imposed on the basic flow. If this amplitude is of size of
O(�) then the interaction of the cell with itself forces a sec-
ond harmonic and a mean state of correction of size O(�2)
and these in turn drives an O(�3) correction to the funda-
mental component of the imposed roll. A solvability crite-
rion for this last correction yields an equation of the
complex valued amplitude AðX ; Y ; T Þ of the imposed dis-
turbance, the two-dimensional Landau–Ginzburg equa-
tion. To simplify the problem we assume the formation
of cylindrical rolls with axis parallel to y-axis so that
y-dependence disappears from Eq. (2.9). The z-dependence
is contained entirely in the sin and cosine functions, which
ensures that the free-free boundary conditions are satisfied.
For values of the control parameter R1 ¼ R1s close to the
threshold value R1scð�2 � 1Þ; we assume solutions of Eqs.
(2.2)–(2.5) in the power of �

f ¼ �fo þ �2f1 þ �3f2 þ . . . ; ð4:1Þ

where

�2 ¼ R1 � R1sc

R1sc

� 1; ð4:2Þ
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and f ¼ f ðu; v;w; h;CÞ; with the first approximation is
given by the eigenvector of the linearized problem:

uo ¼
ip
qsc

½AðX ; Y ; T Þeiqscx cos pz� c:c:�;

vo ¼ �
ipTa

1
2

-2
scqsc

½AðX ; Y ; T Þeiqscx cos pz� c:c:�;

wo ¼ AðX ; Y ; T Þeiqscx sin pzþ c:c:;

ho ¼
1

-2
sc

½AðX ; Y ; T Þeiqscx sin pzþ c:c:�;

Co ¼
1

-2
scL
½AðX ; Y ; T Þeiqscx sin pzþ c:c:�:

ð4:3Þ

Here c.c. represents the complex conjugate, eiqscx sin pz is
the critical mode for the linear problem at R1s ¼ R1sc. The
complex amplitude AðX ; Y ; T Þ depends on the slow vari-
ables. The independent variables x; y; z; t are scaled by
introducing multiple scales

X ¼ �x; Y ¼ �1
2y; z ¼ z; T ¼ �2t; ð4:4Þ
and these formally separate the fast and slow independent
variables in dependent variables u; v;w; h;C. The differen-
tial operators can be expressed as

o

ox
! o

ox
þ � o

oX
;

o

oy
! �

1
2

o

oY
;

o

oz
! o

oz
;

o

ot
! �2 o

oT
:

ð4:5Þ

Using the transformations (4.5), the linear and nonlinear
operators of Eq. (2.9) can be written as

L ¼Lo þ �L1 þ �2L2 þ � � � ;
N ¼ �2No þ �3N1 þ � � � :

ð4:6Þ

Using Eqs. (4.1) and (4.6), into Eq. (2.9), we get equating
the coefficients of various powers of � to zero

Lowo ¼ 0; ð4:7aÞ
Low1 þL1wo ¼No; ð4:7bÞ
Low2 þL1w1 þL2wo ¼N1: ð4:7cÞ
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Substituting the zeroth order solution wo into Lowo ¼ 0,
we get

q4
scð2q2

sc þ 3p2Þ � p2ðTaþ p4Þ ¼ 0: ð4:8Þ

Eq. (4.8) implies that qsc satisfies ðoR1s

oqs
Þqs¼qsc

¼ 0: In Eq.
(4.7b), No ¼ 0. L1wo ¼ 0 and No ¼ 0 implies that Eq.
(4.7b) reduces to w1 ¼ 0. Using equation of continuity we
get u1 ¼ 0. Similarly h1; C1; v1 are given by

v1 ¼
�ip2Ta

1
2

4Prq3
sc-

2
sc

½A2e2iqscx � c:c:�;

h1 ¼
�1

2p-2
sc

jAj2 sin 2pz;

C1 ¼
�1

2pL2-2
sc

jAj2 sin 2pz:

ð4:9Þ

Using w1 ¼ 0, Eq. (4.7c) can be written as

Low2 ¼N1 �L2wo: ð4:10Þ
In order that Eq. (4.10) is solvable in the presence of
Lowo ¼ 0, one must require that the right-hand side of
Eq. (4.10) be orthogonal to wo which is ensured if the coef-
ficient of sin pz in N1 �L2wo is zero. This implies that

ko
oA
oT
� k1

o

oX
� i

2qsc

o
2

oY 2

� �2

A� k2Aþ k3jAj2A ¼ 0;

ð4:11Þ

where

ko ¼ -2
sc 1þ 1

L
þ 2

Pr

� �
-6

sc þ q2
sc

R2

L
1þ 1

Pr

� ���

�R1sc

1

L
þ 1

Pr

� ��
þ Tap2 1þ 1

L

� �
;

k1 ¼ 4q2
sc 10-6

sc þ Tap2 þ R2

L
� R1sc

� �
ð3q2

sc þ 2p2Þ
� �

;

k2 ¼ R1scq2
sc-

4
sc;

k3 ¼
-2

scq
2
sc

2
R1sc �

R2

L3

� �
� Tap4-2

sc

2Pr2q2
sc

:

ð4:12Þ
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By using the scaling (4.4) and Aðx; y; tÞ ¼ AðX ; Y ; T Þ=�, Eq.
(4.11) can be written in fast variables as

ko
oA
ot
� k1

o

ox
� i

2qsc

o
2

oy2

� �2

A� �2k2Aþ k3jAj2A ¼ 0:

ð4:13Þ

Equation (4.13) is a nonlinear two-dimensional time depen-
dent Landau–Ginburg equation and describes the variation
of the slow time scale �2t and slow spatial scale �x perpen-
dicular to the rolls. For ko ¼ 0; we get R2 ¼ R2c [which is
obtained in Eq. (3.11) with q ¼ qsc] and we do not get Lan-
dau–Ginzburg equation. ko is positive when R2 < R2c and is
negative when R2 > R2c: Substituting Ta from Eq. (3.5) and
R1sc from Eq. (3.6) into k1, we get k1 ¼ 12-6

scq
2
sc, hence k1 is

positive and is independent of R2; L: The ratios ko=k2 and
k1=k2 are known as growth rate amplitude and the curva-
ture of the marginal stability curve, respectively. They are
defined as

ko

k2

¼ R1sc

op
oR1

� ��1

and
k1

k2

¼ 1

2R1sc

o2R1s

oq2
s

at qs ¼ qsc:
The parameters ko=k2 and k1=k2 decrease as R2 ! R2c,
when R2 < R2c: Here k2 always positive. For k3 > 0;
we get forward bifurcation (supercritical pitchfork bifurca-
tion) and for k3 < 0 we get backward bifurcation. Landau–
Ginzburg equation is valid only for k3 > 0: At k3 ¼ 0, we
get tricritical bifurcation point (see Fig. 9). From this figure
it is clear that large Taylor number required to get k3 > 0
and an inverse relation exist between Ta; Pr to get k3 > 0:

Dropping the t-dependence and y-dependence terms
from Eq. (4.13), we get

d2A
dx2
þ �

2k2

k1

1� k3

�2k2

jAj2
� �

A ¼ 0: ð4:14Þ

Solution of Eq. (4.14) is given by

AðxÞ ¼ Ao tanh
x
K

� �
; ð4:15Þ

where

Ao ¼
�2k2

k3

� �1
2

and K ¼ 2k1

�2k2

� �1
2

:
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4.1. Long wave-length instabilities

In order to study the properties of a structure with a
given phase winding number dqs ¼ q� qsc; we substitute

Aðx; y; tÞ ¼ A1ðx; y; tÞeidqsx ðstationary solutionsÞ; ð4:16Þ

into Eq. (4.13) and we obtain

ko
oA1

ot
¼ ð�2k2 � k1dq2

s ÞA1 þ 2ik1dqs

o

ox
� i

2qsc

o2

oy2

� �
A1

þ k1

o

ox
� i

2qsc

o2

oy2

� �2

A1 � k3jA1j2A1 ¼ 0: ð4:17Þ

The steady state uniform solution of Eq. (4.17) is

A1 ¼ A1o ¼
ð�2k2 � k1dq2

s Þ
k3

� �1
2

: ð4:18Þ

Let ~uðx; y; tÞ þ i~vðx; y; tÞ be an infinitesimal perturbation
from a uniform steady state solution A1o given by Eq.
(4.18). Now substituting

A1 ¼
ð�2k2 � k1dq2

s Þ
k3

� �1
2

þ ~uþ i~v

into Eq. (4.17) and equating real and imaginary parts, we
obtain

ko
o~u
ot
¼ �2ð�2k2 � k1dq2

s Þ þ k1

o
2

ox2
þ k1dqs

qsc

o
2

oy2
� k1

4q2
sc

o
4

oy4

� �
~u

� 2k1dqs �
k1

qsc

o2

oy2

� �
o~v
ox
; ð4:19aÞ
ko
o~v
ot
¼ 2k1dqs �

k1

qsc

o2

oy2

� �
o~u
ox

þ k1

o2

ox2
þ dqs

qsc

o2

oy2
� 1

4q2
sc

o4

oy4

� �
~v: ð4:19bÞ

We analyze Eqs. (4.19a) and (4.19b) by using normal
modes of the form

~u ¼ UeðStÞ cosðqxxÞ cosðqyyÞ;
~v ¼ V eðStÞ sinðqxxÞ cosðqyyÞ: ð4:20Þ

Putting solutions (4.20) into Eqs. (4.19a) and (4.19b) we
get,

koS þ 2ð�2k2 � k1dq2
s Þ þ k1q2

x þ
k1dqs

qsc

q2
y þ

k1

4q2
sc

q4
y

� �
U

þ 2dqs þ
q2

y

qsc

 !
k1qxV ¼ 0; ð4:21aÞ

k1qx 2dqs þ
q2

y

qsc

 !
U

þ koS þ k1q2
x þ

k1dqs

qsc

q2
y þ

k1

4q2
sc

q4
y

� �
V ¼ 0: ð4:21bÞ

On solving Eqs. (4.21a) and (4.21b) we get,

k2
oS2þ 2S 2koð�2k2 � k1dq2

s Þ þ kok1q2
x þ

kok1

qsc

q2
ydqsþ

kok1

4q2
sc

q4
y

� �

þ 2ð�2k2� k1dq2
s Þ þ k1q2

x þ
k1

qsc

q2
ydqsþ

k1

4q2
sc

q4
y

� �

� k1q2
x þ

k1dqs

qsc

q2
y þ

k1

4q2
sc

q4
y

� �
� q2

x 2k1dqsþ
k1

qsc

q2
y

� �2

¼ 0;

ð4:22Þ

whose roots ðS�Þ are real. Here ðS�Þ defined as

Sð�Þ ¼ � 1

k2
o

2koð�2k2 � k1dq2
s Þ þ kok1q2

x þ
kok1

qsc

q2
ydqs þ

kok1

4q2
sc

q4
y

� �8><
>:

� ð2koð�2k2� k1dq2
s ÞÞ

2þ k2
1q2

x 2dqsþ
q2

y

qsc

 !2
2
4

3
5

1
2

9>=
>;;
ð4:23Þ

solution S(�) is clearly negative, thus the corresponding
mode is stable and if S(+) is positive then rolls can be
unstable. Symmetry considerations help us to restrict the
study of S(+) to a domain ðqx P 0; qy P 0Þ:

4.1.1. Longitudinal perturbations and Eckhaus instability

Inserting qy ¼ 0 into (4.22), we get

k2
oS2 þ 2Sð2koð�2k2 � k1dq2

s Þ þ kok1q2
xÞ

þ k1q2
x ½2ð�2k2 � 3k1dq2

s Þ þ q2
x � ¼ 0:

Since the roots are real and their sum is always negative,
the pattern is stable as long as both roots are negative,
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i.e., their product is positive. The cell pattern becomes
unstable when the product is negative, i.e., when

q2
x P 2 dq2

s �
k2

k1

� �
and q2

x 6 2ð3k1dq2
s � �2k2Þ;

for this requires
ffiffiffiffiffiffi
�2k2

3k1

q
6 jdqsj 6

ffiffiffiffiffiffi
�2k2

k1

q
; this condition de-

fines the domain of the Eckhaus instability. The above con-

dition implies that the most unstable wave vector tends to

zero, when jdqsj !
ffiffiffiffiffiffi
�2k2

3k1

q
:

4.1.2. Transverse perturbations and zigzag instability

Let us consider qx ¼ 0 into (4.22), we get

k2
oS2 þ 2S 2koð�2k2 � k1dq2

s Þ þ
kok1

qsc

q2
ydqs þ

kok1

4q2
sc

q4
y

� �

þ 2ð�2k2 � k1dq2
s Þ þ

k1

qsc

q2
ydqs þ

k1

4q2
sc

q4
y

� �

� dqs

qsc

þ
q2

y

4q2
sc

" #
k1q2

y ¼ 0:

The two eigen modes are uncoupled and we have S(�),

Sð�Þ ¼ �2ð�2k2 � k1dq2
s Þ �

k1

qsc

q2
ydqs �

k1

4q2
sc

q4
y < 0;

for one of them. The other is amplified when

SðþÞ ¼ �k1q2
y dqs þ

q2
y

4qsc

 !
> 0:

This implies that dqs < 0 defines the domain of the zigzag
instability. Since k1 > 0, we get jdqsj > q2

y=4qsc.
We have studied the effect of rotation rate on long wave

length instabilities and observed that the Eckhuas instabil-
ity and zigzag instability regions increases when Ta

increases (see Fig. 10). In this figure we can see that
dqs ! 0 as q! qsc: This result is true for other parameters
also.
Fig. 10. Regions of Eckhuas instability (E), zigzag instability (Z) and
stable region (S) are plotted for L ¼ 0:1, Pr ¼ 0:5 and R2 ¼ 1000:
4.2. Heat transport by convection

The maximum of steady amplitude A is denoted by
jAmaxj which is given as

jAmaxj ¼
�2k2

k3

� �1
2

: ð4:24Þ

Equation (4.24) is obtained either from Eq. (4.15) with
tanhðx=KÞ ¼ 1 or from Eq. (4.16), with dqs ¼ 0 and
A1 ¼ A1o. We use jAmaxj to calculate Nusselt number Nu.
To discuss the heat transfer near the neutral region, we ex-
press it through the Nusselt number. The Nusselt number
defined as

Nu ¼ Hd
jDT 0

which is the ratio of the heat transported across any layer
to the heat which would be transported by conduction
alone. Here H is the rate of heat transfer per unit area
and is defined as

H ¼ � oT total

oz0

� �
z0¼0

; ð4:25Þ

where T total ¼ h0 þ T 0b � z0DT 0. In (4.25), angular brackets
correspond to a horizontal average. The Nusselt number
can be calculated in terms of amplitude A and it is given as

Nu ¼ 1þ �2

-2
sc

jAmaxj2: ð4:26Þ

From Eq. (4.26), we get conduction for R1 6 R1sc and con-
vection for R1 > R1sc:

Since the amplitude equation is valid for k3 > 0; this is
possible for R1 > R1sc (supercritical). We observed that
for R2 > 0, large Taylor number is required to get k3 > 0.
Thus we get Nu > 1 for R1 > R1sc: We get convection for
Nu > 1 and conduction for Nu ¼ 1: For the case of station-
ary convection as Nusselt number Nu increases heat con-
ducted by steady mode increases.

In the problem of double diffusive convection with rota-
tion, Nu depends on R2; Pr; Ta and L. We have computed
Nu for different values of Ta, for some fixed values of other
parameters and observed that Nu increases as Ta decreases
(see Fig. 11). This implies that rotation rate inhibits the heat
transport. Similar result obtained for L, that is when L

increases Nu decreases. In non rotating convective problems
k3 does not depend on Pr. But for rotating problems k3

always depends on Pr. The Nusselt number shows two dif-
ferent results depending on Pr. That is for Pr 6 Prc, as Pr

increases then Nu increases. For Pr > Prc;when Pr increases
then Nu decreases. Finally we have studied the effect of R2

on Nu, and found that Nu increases as R2 increases.

5. Derivation of Landau–Ginzburg type equations at the

onset of oscillatory convection

To derive coupled Landau–Ginzburg type equations we
consider the following scaling.
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Fig. 11. (a) is plotted for Ta ¼ 105 and (b) is plotted for Ta ¼ 2� 105 for the fixed values of L ¼ 0:1; R2 ¼ 10; Pr ¼ 0:5. In both figures solid lines start
from Nu ¼ 1.

S.G. Tagare et al. / International Journal of Heat and Mass Transfer 50 (2007) 3122–3140 3135
X ¼ �x; s ¼ �t; T ¼ �2t; ð5:1Þ

where �2 ¼ R1=R1oc � 1� 1 and R1oc is a critical thermal
Rayleigh number of oscillatory convection.

From (5.1) the differential operators o=ox; o=ot can be
written as

o

ox
! o

ox
þ � o

oX
;

o

ot
! o

ot
þ � o

os
þ �2 o

oT
: ð5:2Þ

We write the solutions of Eqs. (2.2)–(2.5) in the power
series of � given as follows

f ¼ �fo þ �2f1 þ �3f2 þ � � � ð5:3Þ

where f ¼ f ðu; v;w;xx;xy ;xz; h;CÞ; with the first approxi-
mation is given by

uo ¼
pi

qoc

½A1LeiðxoctþqocxÞ � A1Reiðxoct�qocxÞ � c:c:� cos pz;

vo ¼
�Ta

1
2pi

qoc

A1LeiðxoctþqocxÞ � A1Reiðxoct�qocxÞ

-2
oc þ ixoc

Pr

� 	 � c:c:

" #
cos pz;

wo ¼ ½A1LeiðxoctþqocxÞ þ A1Reiðxoct�qocxÞ þ c:c:� sin pz;

Co ¼
1

L
A1LeiðxoctþqocxÞ þ A1Reiðxoct�qocxÞ

-2
oc þ ixoc

L

� 	 þ c:c:

" #
sin pz;

ho ¼
A1LeiðxoctþqocxÞ þ A1Reiðxoct�qocxÞ

ð-2
oc þ ixocÞ

þ c:c:

� �
sin pz;

ð5:4Þ

where -2
oc ¼ q2

oc þ p2, c.c. stands for complex conjugate
and A1L and A1R are slow varying amplitude functions of
left and right travelling waves.

By substituting the definitions of (5.2) and (5.3) into Eq.
(2.9) and equating the coefficients of �; �2; �3 to zero, we
get
Lowo ¼ 0; ð5:5aÞ
L1wo þLow1 ¼No; ð5:5bÞ
L2wo þL1w1 þLow2 ¼N1: ð5:5cÞ

From linear equation (5.5a), we get critical Rayleigh num-
ber. At O(�2), No ¼ 0 and L1wo ¼ 0 gives

oA1L

os
� vg

oA1L

oX
¼ 0 and

oA1R

os
þ vg

oA1R

oX
¼ 0; ð5:6Þ

where vg ¼ ðox
oqÞq¼qoc

is the group velocity and is real. Hence
we get w1 ¼ 0: Using this fist order solution, from equation
of continuity we get u1 ¼ 0. The remaining first order solu-
tions m1, h1 and C1 are obtained from the following
equations:

1

Pr
o

ot
�r2

� �
ov1

ox
¼ Ta

1
2
ow1

oz
� 1

Pr
½ð~V o � rÞxzo � ð~xo � rÞwo�;

ð5:7aÞ
o

ot
�r2

� �
h1 ¼ w1 � ð~V o � rÞho; ð5:7bÞ

1

L
o

ot
�r2

� �
C1 ¼

w1

L
� 1

L
ð~V o � rÞCo: ð5:7cÞ

By using zeroth order solutions into Eqs. (5.7a)–(5.7c) we
get

v1 ¼
�iTa

1
2p2

2Prqoc

A2
1Le2iðxoctþqocxÞ

2q2
oc þ ixoc

Pr

� 	
-2

oc þ ixoc

Pr

� 	
"

� A2
1Re2iðxoc t�qocxÞ

2q2
oc þ ixoc

Pr

� 	
-2

oc þ ixoc

Pr

� 	þ-2
oce

2iqocxA1LA�1R

q2
oc -4

oc þ
x2

oc

Pr2

� � � c:c:

3
5;

C1 ¼
�p

L2

-2
ocðjA1Lj2 þ jA1Rj2Þ
2p2 -2

oc þ
x2

oc

L2

� � þ A1LA1Re2ixoc t

2p2 þ ixoc

L

� 	
-2

oc þ ixoc

L

� 	þ c:c:

2
4

3
5 sin 2pz;

h1 ¼�p
ðjA1Lj2 þ jA1Rj2Þ-2

oc

2p2ð-4
oc þx2

ocÞ
þ A1LA1Re2ixoc t

ð2p2þ ixocÞð-2
oc þ ixocÞ

þ c:c:

" #
sin 2pz:

ð5:8Þ
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The solvability criterion of Eq. (5.5c) gives the following
coupled amplitude equations, known as Landau–Ginzburg
type equations

Ko
oA1L

oT
þ K1

o

os
� vg

o

oX

� �
A2L � K2

o2A1L

oX 2
� K3A1L

þ K4jA1Lj2A1L þ K5jA1Rj2A1L

¼ 0; ð5:9aÞ

Ko
oA1R

oT
þ K1

o

os
þ vg

o

oX

� �
A2R � K2

o
2A1R

oX 2
� K3A1R

þ K4jA1Rj2A1R þ K5jA1Lj2A1R

¼ 0; ð5:9bÞ

where Ko; K1; K2; K3; K4 and K5 are the complex coeffi-
cients in physical parameters qoc; R1oc; R2; L and Ta. Here

A2L ¼
o

os
þ vg

o

oX

� �
A1L and A2R ¼

o

os
� vg

o

oX

� �
A1R:

Clearly A1L; A1R are of order � and A2L; A2R are of order �2.
From Eqs. (5.6), we get A1Lðn0; T Þ and A1Rðg0; T Þ, where
n0 ¼ vgsþ X , g0 ¼ vgs� X . Equations (5.9a), (5.9b) can be
written as

2vgK1

oA2L

og0
¼ �Ko

oA1L

oT
þ K2

o2A1L

oX 2
þ K3A1L

� K4jA1Lj2 þ K5jA1Rj2
� �

A1L; ð5:10aÞ

2vgK1

oA2R

on0
¼ �Ko

oA1R

oT
þ K2

o2A1R

oX 2
þ K3A1R

� ðK4jA1Rj2 þ K5jA1Lj2ÞA1R: ð5:10bÞ

Let n0�½0; l1�, g0�½0; l2�, where l1; l2 are periods of A1L;A1R,
respectively. Expansion (5.3) remains asymptotic for times
t ¼ Oð��2Þ only if an appropriate solvability condition
holds. This condition obtained by integrating Eq. (5.10a)
over g0 and Eq. (5.10b) over n0, we get

Ko
oA1L

oT
¼ K2

o
2A1L

oX 2
þ K3A1L � ðK4jA1Lj2 þ K5jA1Rj2ÞA1L;

ð5:11aÞ

Ko
oA1R

oT
¼ K2

o2A1R

oX 2
þ K3A1R � ðK4jA1Rj2 þ K5jA1Lj2ÞA1R:

ð5:11bÞ

Equation (5.11a) is for the amplitude of left moving waves
and Eq. (5.11b) is for the amplitude of right moving waves.
Equations (5.11) are known as one-dimensional coupled
Landau–Ginzburg equations with original slow spatial
coordinate and time. These Eqs. (5.11) are correct asymp-
totic evolution equations when vg ¼ Oð1Þ:

5.1. Travelling wave and standing wave convection

To study the stability regions of travelling waves and
standing waves we proceed as follows:
On dropping slow space variable X from Eqs. (5.11a)
and (5.11b), we get a pair of first order ordinary differential
equations

dA1L

dT
¼ bA1L þ cA1LjA1Lj2 þ dA1LjA1Rj2; ð5:12Þ

dA1R

dT
¼ bA1R þ cA1RjA1Rj2 þ dA1RjA1Lj2; ð5:13Þ

where

b ¼ K3

Ko
; c ¼ �K4

Ko
and d ¼ �K5

Ko
:

Consider A1L ¼ aLei/L and A1R ¼ aRei/R (we can write a
complex number in the amplitude and phase (angle) form),
where aL ¼ jA1Lj, /L ¼ argðA1LÞ ¼ tan�1ðImðA1LÞ

ReðA1LÞ
Þ and aR ¼

jA1Rj, /R ¼ argðA1RÞ ¼ tan�1ðImðA1RÞ
ReðA1RÞ

Þ. aL; aR; /L; /R are

functions of time T since A1L and A1R are functions of T.
Thus aL and aR are positive functions.

Substituting the definitions of A1L and A1R and
b ¼ b1 þ ib2; c ¼ c1 þ ic2; d ¼ d1 þ id2 into equations
(5.12) and (5.13), we get

daL

dT
¼ b1aL þ c1aLjaLj2 þ d1aLjaRj2; ð5:14Þ

d/L

dT
¼ b2 þ c2jaLj2 þ d2jaRj2; ð5:15Þ

daR

dT
¼ b1aR þ c1aRjaRj2 þ d1aRjaLj2; ð5:16Þ

d/R

dT
¼ b2 þ c2jaRj2 þ d2jaLj2: ð5:17Þ

Eqs. (5.14) and (5.16) not contain phase term, so we take
these two equations for the future discussions. We have
equations (5.14) and (5.16) as

daL

dT
¼ b1aL þ c1a3

L þ d1aLa2
R; ð5:18Þ

daR

dT
¼ b1aR þ c1a3

R þ d1aRa2
L; ð5:19Þ

since aL and aR are positive functions. Eqs. (5.18) and
(5.19) are known as coupled Landau equations. Put

daL

dT
¼ F 1ðaL; aRÞ;

daR

dT
¼ F 2ðaL; aRÞ ð5:20Þ

Now we discuss the stability of equilibrium points of above
equations (5.20). We get four equilibrium points like
ðaL; aRÞ ¼ ð0; 0Þ [conduction state], ðaL; aRÞ ¼ ðaL; 0Þ
[aL = amplitude of left travelling waves, here we get
F 2 ¼ 0, and we get one condition from F 1 ¼ 0, i.e.,
a2

L ¼ �
b1

c1
ð¼ jA1Lj2Þ], ðaL; aRÞ ¼ ð0; aRÞ [aR = amplitude of

right travelling waves, here F 1 ¼ 0 and from F 2 ¼ 0; we

get a2
R ¼ �

b1

c1
ð¼ jA1Rj2Þ], and for aL 6¼ 0 and aR 6¼ 0 we get

ðaL; aRÞ ¼ ð� b1

ðc1þd1Þ;�
b1

ðc1þd1ÞÞ [this gives condition for stand-

ing waves. At standing waves we have A1L ¼ A1R, so
aL ¼ aR].
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Now the Jacobian of F1 and F2 is given by

oF 1

oaL

oF 1

oaR

oF 2

oaL

oF 2

oaR

0
BB@

1
CCA:

If real parts of all eigenvalues of the Jacobian are negative
at an equilibrium point, then that point is a stable equilib-
rium [Lyapounov’s theorem or principle of linearized sta-
bility]. Some valuable conditions for travelling waves and
standing waves are: Travelling waves are stable if
b1 > 0; c1 < 0 and d1 < c1 < 0. Standing waves are stable
if b1 > 0; c1 < 0 and (i) if d1 > 0, then �c1 > d1 > 0, (ii) if
d1 < 0, then �c1 > �d1 > 0. At the end of this section,
we have obtained exact analytical solutions of coupled
Landau equations for the case of d1 ¼ c1 for both travelling
waves and standing waves. Similar discussions can be done
for the case d1 6¼ c1 which is beyond scope of this paper.

The stability branches of steady state convection, travel-
ling waves and standing waves are summarized in Fig. 12
Fig. 12. (a), (b) and (c) are typical diagrams showing the stability of equilibr
waves). On solid lines equilibrium solutions are stable and on dotted lines the
[2]. Here E1 is total amplitude and defined as
E1 ¼ a2

L þ a2
R. We do not distinguish between left travelling

waves and right travelling waves. For rest state E1 ¼ 0, for
travelling waves E1 ¼ �b1

c1
, for standing waves E1 ¼ �2b1

c1þd1
.

Travelling waves are supercritical if c1 < 0 and standing
waves are supercritical if c1 þ d1 < 0. Fig. 12a is drawn
for stable travelling wave conditions and Fig. 12b is drawn
for stable standing wave conditions in ðb1;E1Þ-plane. The
symbols (�,�) and (+,�) in Figs. 12a and b indicate that
both two roots of Jacobian are negative and atleast one
root is positive among two roots. In Figs. 12a and b, trav-
elling wave solution and standing wave solution bifurcate
simultaneously from the steady sate solution (b1 P 0 at
this bifurcation point). In these Figs. 12a and b, steady
state solution is stable for b1 < 0 and unstable for b1 > 0.
These figures show that for b1 > 0 both travelling waves
and standing waves are supercritical. When travelling
waves and standing waves bifurcate supercritically then
atmost one solution among travelling waves and standing
waves will be stable. Thus, for b1 > 0 (Fig. 12a) travelling
ium solutions SS (steady state), SW (standing waves) and TW (travelling
y are unstable.
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waves are stable and (Fig. 12b) standing waves are stable.
In more detail we reproduce results of the stability analysis
of equilibrium solutions in Fig. 12c, which is plotted in
ðc1; d1Þ-plane. From this figure we can observe that travel-
ling waves are subcritical for c1 > 0 and standing waves are
subcritical for c1 þ d1 > 0.

The problem of thermohaline convection in rotating flu-
ids, with periodic boundary conditions is studied by using a
standard perturbation technique. Weakly nonlinear theory
must be used to resolve which of standing or travelling
waves will occur at the onset of convection. For each set
of parameter values, the linear problem was solved to
determine whether stationary or oscillatory mode becomes
unstable first, as R1 is increased. If it was found that the
oscillatory mode becomes unstable, the coefficients
Ko; K1; K2; K3; K4; K5 were determined at the value of
qo that minimized R1o, to investigate the stability of travel-
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Fig. 13. Stability regions of steady state (SS), standing waves (SW) and trav
L = 0.1, (a) Pr = 0.025, (b) Pr = 0.1, (c) Pr = 0.5.
ling or standing waves. In Fig. 13, we have showed the sta-
bility regions of standing waves and travelling waves in
ðTa;R2Þ-plane for Pr ¼ 0:025, 0.1, 0.5. For Pr ¼ 0:025; we
get only stable standing waves at the onset of oscillatory
convection. In the case of Pr ¼ 0:1, 0.5 we get both travel-
ling and standing waves are stable. This implies that at the
onset if we get stable travelling waves (standing waves)
then they loss their stability to standing waves (travelling
waves) soon after the initial bifurcation as Ta increases
for a fixed R2 in ðTa;R2Þ-plane. The stable regions of both
travelling and standing waves increases as Pr increases.

Now we will give exact solutions for Eqs. (5.18) and
(5.19) when c1 ¼ d1. Substituting

aLðtÞ ¼ rðtÞ cos wðtÞ and aRðtÞ ¼ rðtÞ sin wðtÞ ð5:21Þ
into Eqs. (5.18) and (5.19), we get
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elling waves (TW) are plotted at the onset of oscillatory convection for
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dr
dt
¼ rðb1 þ r2PÞ; ð5:22Þ

dw
dt
¼ r2

4
ðd1 � c1Þ sin 4w; ð5:23Þ

where P ¼ c1ðsin4 wþ cos4 wÞ þ 2d1 sin2 w cos2 w: From the
transformation (5.21), we get left travelling waves at
w ¼ wo ¼ 0, right travelling waves at w ¼ wo ¼ p=2 and
standing waves at w ¼ wo ¼ p=4: At c1 ¼ d1, Eq. (5.23)
gives w ¼ wo ¼ constant. Now Eq. (5.22) becomes

dr
dt
¼ rðb1 þ r2c1Þ: ð5:24Þ

The equilibrium solutions are supercritical when b1 > 0
and c1 < 0.

Case 1: For b1 > 0 and c1 < 0, Eq. (5.24) gives the
solution
rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1=c1

p
1� b1=c1

r2
o
þ 1

� �
e�2b1t

h i1
2

; ð5:25Þ
where ro ¼ rð0Þ. Clearly the solution
rðtÞ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1=c1

p
as t!1:

Case 2: For b1 < 0; say b1 ¼ �k2 and c1 < 0, Eq. (5.24)
gives the solution ffiffiffiffiffiffiffiffip

rðtÞ ¼

k= �c1

�1þ �k2=c1

r2
o
þ 1

� �
e2k2t

h i1
2

: ð5:26Þ
The solution (5.26) showing the subcritical stable
behavior. For the case b1 < 0; say b1 ¼ �k2 and
c1 > 0, Eq. (5.24) has the solutionffiffiffiffip

rðtÞ ¼

k= c1

1þ k2=c1

r2
o
� 1

� �
e2k2t

h i1
2

: ð5:27Þ
The solution (5.27) shows that the nonlinear ef-
fects produce a subcritical instability if the ampli-
tude exceeds the threshold ro > k=

ffiffiffiffi
c1

p
; otherwise

we get subcritical stable state.The solutions of
Landau equation (5.24) show that a supercritical
stable behavior and a subcritical unstable behav-
ior under the suitable conditions.

6. Conclusions

In this paper the stability of thermohaline convection in
rotating fluid has been investigated. By eliminating the
thermal Rayleigh number R1 from E ¼ 0 and D ¼ 0, we
get the value of R2 ¼ R2c given by Eq. (3.11). We have also
obtained the values of Takens–Bogdanov bifurcation
points and co-dimension two points by plotting graphs of
neutral curves corresponding to stationary and oscillatory
convection for different values of physical parameters rele-
vant to thermohaline convection in rotating fluid. From
Eq. (3.8), we get two Takens–Bogdanov bifurcation points
for R2 > 0, while from Eq. (3.22) we get two Takens–Bog-
danov bifurcation points for both R2 < 0 and R2 > 0: In
this problem for L ¼ 1; Lw ¼ 0 gives a cubic polynomial
equation in p, from which we get an analytical expression
at co-dimension two point given by Eq. (3.31). This Eq.
(3.31) is same as Eq. (A4) given in Appendix by Pearlistien
[6]. For L 6¼ 1, we get oscillatory convection for both
Pr < 1 and Pr > 1: We have considered only the physically
realistic case of L < 1: We get co-dimension three bifurca-
tion point at R2 ¼ R�2c by eliminating Ta and R1 from equa-
tions E ¼ 0, D ¼ 0 and C ¼ 0; given by Eq. (3.23).

We have derived two-dimensional Landau–Ginzburg
equation (4.11) at the onset of supercritical pitchfork bifur-
cation. For R2 < R2c, ko > 0 and we get Eq. (4.11). For
ko ¼ 0, we get R2 ¼ R2c which corresponds to Takens–Bog-
danov bifurcation point given by Eq. (3.11) at q ¼ qsc.
Near the Takens–Bogdanov bifurcation point the conduct-
ing state becomes unstable against both stationary and
oscillatory mode, i.e., the real parts of two eigenvalues pass
through zero nearly simultaneously. This violets the
assumption made for deriving the amplitude equation
(4.11) and amplitude equations (5.9a) and (5.9b). A new
amplitude equation, which is second order in time, has to
be used near the Takens–Bogdanov bifurcation point. This
amplitude equation (which is second order in time) is valid
near the Takens–Bogdanov bifurcation point includes Eqs.
(5.9a) and (5.9b) as special cases, leading to relations
between the respective coefficients. k2 is always positive.

Landau–Ginzburg equation (4.11) is valid only for
supercritical bifurcation ðk3 > 0Þ. k3 ¼ 0 corresponds to
the tricritical bifurcation point. By using Eq. (4.13), we
have obtained conditions for long wave-length instabilities
viz. Eckhaus and zigzag instabilities. We have also calcu-
lated Nusselt number by dropping t-dependence from Eq.
(4.13). To study the effect of physical parameters on heat
transport it is necessary that k3 > 0:

We have derived one-dimensional nonlinear coupled
Landau–Ginzburg type equations (5.9a) and (5.9b) at the
onset of supercritical Hopf bifurcation by using two time
scales. The discussion related to equilibrium solutions
viz., steady state, travelling waves and standing waves are
independent of boundary conditions. If both travelling
waves and standing waves bifurcate supercritically, the
one with larger E1 will be stable. E1 ¼ 0 for steady state
solution. Fig. 12a and b are typical diagrams correspond
to stability conditions of travelling waves and standing
waves respectively. From Fig. 12c, it is evident that in
c1 > 0; c1 þ d1 > 0 regions both travelling waves and
standing waves are unstable and in c1 < 0; c1 þ d1 < 0
regions either travelling waves or standing waves are stable.
We have also studied the stability regions of travelling
waves and standing waves in ðTa;R2Þ-plane and observed
that when Pr increases then we get both stable standing
waves and travelling waves. We have obtained the exact
analytical solutions when c1 ¼ d1, for travelling waves
and standing waves. The analytical solution of Landau
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problem (5.24) gives the supercritical stable travelling
waves and standing waves for b1 > 0, c1 < 0 and subcritical
unstable travelling waves and standing waves for
b1 < 0; c1 < 0. We can have similar analytical discussion
from Landau equations (5.18) and (5.19) to travelling
waves (aL ¼ 0 or aR ¼ 0) and standing waves (aL ¼ aR).
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